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ABSTRACT

The time-optimal control law as a function of the states for second and third-order

linear regulators with real eigenvalues was derived. Notions of a switching curve for the

second-order system and switching surface for the third-order system was introduced. A set

of states was found which divided the state space into two distinct regions, in one of which

the time-optimal control was +1 and in the other of which the time-optimal control was -1.
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I. INTRODUCHON

The study of specific time-optimal systems has been continuing in the development of

modem control theory. To solve an optimization problem, we must first define a goal or a

cost function (performance measure) for the process we are trying to optimize. With a

knowledge of the cost function, and the system states and parameters, we can determine the

control which minimizes (or maximizes) the cost function. For some systems a criterion of

minimum response time may not be the most suitable measure of system performance.

In this thesis, a minimum-time control for a linear, time invariant third-order regulator

with three distinct, nonpositive, real eigenvalues is developed. The time-optimal control, as

a function of the states, must transfer the system from any arbitrary initial condition to a target

set (origin of the state space) as quickly as possible.



iU. MINIMUM-TIME CONTROL

The goal in a minimum-time problem is to transfer the state of the system to a target

set as quickly as possible. We assume that the target set is the origin of the state space. For

this reason we call this problem the linear time-optimal regulator problem. [Ref I]

A. PROBLEM STATEMENT

Consider the dynamical system

4(t) - Az(4 ÷Bx(t) (2.1)

where the n-vector x(4 is the state, the system matrix A and the gain matrix B are n x n and

n x m constant matrices, respectively. The in-vector r(t) is the control.

We assume that the system (2.1) is completely controllable and that the components ofia()

are bounded in magnitude by the relation

l-8# ) 1 g I j ,,.. (2.2)

Given that at the initial time t, - 0, the initial state of the system is

X(e) - 1, (2.3)

we are asked to find the control a (t) that transfers the system from 4 to the origin 0 in

minimum time. [Ref. I]

If the outputy(g) of the system (2.1) is related to the state x(4 and the control n(t) by

the relation

A) - Cz(A +DRM{ (2.4)
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then a control that drives the states to the orgin can be extended in such a way as to drive the

output to zero and hold it at zero thereafter [ReM I]. If 1" denotes the minimum time required

to force the states to the origin, then at - t , we have

-y) = (2.5)

where the control is set

(O => to.t (2.6)

B. NECESSARY CONDITIONS FOR THE TIME-OPTIMAL CONTROL

1. Performance Measure

In order to evaluate the performance of a system quantitatively, we must select

a performance measure. An optimal control is defined as one that minimizes (or maximizes)

the performance measure. Mathematically, the performance measure to be minimized for the

minimum-time problems is defined as

J- ;dt - if- to (2.7)

2. Pontryagin's Minimum Principle

The Hamiltonian function for the problem is

HI(9),pQ),n(9,t ] -= +p r()Ax(t)+p r(tODa(s (2.8)

where p(t) is the costate vector. Let us assume that a time-optimal control exists and

transfers the initial state (2.3) to the origin S in minimum time t*. If x {) denotes the

optimal state trajectory of the system (2. 1) corresponding to a "(0, originating at 9 at

to - 0 and hitting the origin in minimum time, then x'*(a) and p 'Q) need to satisfy the

canonical equations given by

3



M- 8E~x N{p(OWN I] (2.9)

or equivalently

= Ax "()+JDa (t) (2.10)

and

PW (2.11)

or equivalently

-A -A'Tp *( (2.12)

with the boundary conditions

x O(O) (2.13)
x (2.1)3

The necessary condition for all admissible controls a(t) V t e [Gt 1 is

1 +p "T(")Ax *(") +p "T(.)B0  "() < 1 +p *T(t4Ax *(t)p ,*r(0',(0' (2.14)

In other words a necessary condition for x *Q) to minimize the performance measure J is

H [lx"I,',= 0(9 ,'*(1,,! H lx'(t).,, (,),(,,t I V t e [O,t'l (2.15)

Equation (2.14) yields the relation

"() - -sign ( B rp (00) (2.16)

4



Equation (2.15), which indicates that an optimal control must minimize the Hamiltonian, is

called Ponyapgin 's minimum principle [Ref 2]. Let us now state some important theorems

concerning the time-optimal control.

a. ConfrollabUity

Controllability is very important, because we consider problems in which the

goal is to transfer a system from an arbitrary initial state to the origin while minimizing the

performance measure. Thus controllability of the system is a necessary condition for the

existence of a solution.

A linear, time-invariant system is controllable if and only if the n x mn matrix

Q - [BIABIA 2 BI...A-aB (2.17)

has rank n (order of the system). If there is only one control input (m = 1), a necessary and

sufficient condition n x n matrix Q to be nonsingular.

b. Observability

A linear, time-invariant system is observable if and only if the n x qn matrix

R = [C 'JA TC T....(A r)•'C T] (2.18)

has rank n. If there is only one output (q = 1), a necessary and sufficient condition for

observability is that R to be nonsingular.

c. Existence

If al of the eigenvalues of the system matrix A have nonpositive real parts,

then an optimal control exists and it is bang bang.

5



d Uniqueness

If an extremal control exists, then it is unique. A control which satisfies the

necessary conditions in equations (2.9) through (2.15) is called an extremal control.

e- Number of Switchings

If the eigenvalues of the system matrix A are all real and a unique time-

optimal control exists, then the control can switch at most n-i times.



III. TIME-OPTIMAL CONTROL OF A SECOND-ORDER

PLANT WITH TWO TIME CONSTANTS

A. TIME-OPTIMAL SYSTEMS

The problems we consider in this and the next chapter will involve a single control

variable u(t). The systems we examine are time-invariant, and the control is to be a function

of the states. Time-optimal control will be a piecewise constant function of time over the sets

or regions of the state space. These sets are separated by curves in two-dimensional space,

and by surfaces in three-dimensional space. The separating sets are called switching curves,

and switching surfaces. [Ref. 1]

The procedure that will be used in finding the optimal control for both second and third

order regulator problems can be outlined as follows:

* Define the problem precisely

* Form the Hamiltonian function

* Find the H-minimal control

* Find the equations of the costate variables

• Determine the control sequences that are candidates for the optimal control

* Determine the switching curves and switching surfaces that divide the state space into
various regions

* Find the control sequences that satisfy the boundary conditions

* Simulate the linear time-optimal regulator with initial conditions emanating from each
possible region of the state space.

7



1. Problem Defluitiom

We consider the system described by the second-order differential equation

d 2 ( ) +(i+P)4W+iJp( me( (3.1)
d12 de

where .,(0 is the output, n(t0 is the control which is restricted in magnitude by the relation

"(9)1 : 1 (3.2)

and s , p are real, distinct, nonzero eigenvalues. The transfer function of the system is

Y(S) . G• 1 (
U(S) ( + OX÷) (3.3)

with real poles at -- a anda--p . Using Eqn. (3.3) the state space equations can be written

in matrix form as

A4."- -(Q+p) ,, [1(÷ ) (3.4)

Note that Eqn. (3.4) is of the form

o(t) - A,.$+O+Bx(t (3.5)

First we need to check the controllability and the observability of the system.

Q+ -(.+p)I R= - (3.6)

8



Since there is only one control input and both matrices are nonsinguiar, the system is

controllable and observable. Since the eigenvalues of A, - a and - p are nonpositive real

numbers, an optimal control exists, and it is unique.

Now, we define a matrix P whose columns are the eigenvectors of A, and a new dependent

variable z(e) by

') - P'•t (3.7)

Then, substituting for y(t) in Eqn. (3.5), we obtain

t(- - P'AP+P1 '3B(O (3.8)

where P and P- 1 matrices are

Pa[_ .. p P-1.( _)-. -I (3.9)

Eqn. (3.8) can be written in matrix form as

-1l
* _p us) (3.10)

9



or in scalar equations

4% = s44 -3 O(4- 9 (.1

-( -p) + 1 )

For simplicity, we define the state variables x,() and x1(d) by the relations

xi(t) - p(-P)z(Ox,(O - -PI(u- P)s20) (3.12)

Then, x1(*) and ;(t) satisfy the differential equations

M() - -a r)- Sam (3.13)*2(t - -PX2(- P=(

or in matrix form

44t [I-- j 4g ;]ao (3.14)

Note that Eqn.(3.14) is of the form

A(t) - Ax(t)+B,(t) (3.15)

Figure (3. 1) illustrates in block diagram form, the linear transformation necessary to obtain

x,)( and ;(t) from y,7( and 72(0. [Ref 1]

10



r

Figure 3.1 Block diagram of the linear transformation between x and y variables

We have thus transferred the original system (3.5) into an equivalent uncoupled

system (3.15) using similarity transformations. Note that existence and uniqueness of time-

optimal control holds also for the system (3.15).

2. Hamiltonian, H-Minimal Control, and tLe Equations of the Costate

Variables

Let us write the Hamiltonian for this particular problem. We have

H - 1 - a x1 ()p ,(t - P x2(0p2 () + -(I I - •p,(O - Pp2() ] (3.16)

Since the Hamiltonian H is linear in the control vector x(t), minimization of the Hamiltonian

with respect to x(t) requires that [Ref, 3]

a(S) - #aIgulrp1 ()*+pp 2(t)) (3.17)

11



where the costato vwibnp,(#) and p(4 set* the diffed equaiou

PIN a - air (3.15

ax2(4 ".,l
so that

PIN = tPP) (3.19)

P-A eOpi(s).

Substituting Eqn. (3.19) into Eqn. (3.17), we find that

so) * *(UP,(0)ec I pp2() fp) (3.20)

where the function q(t) - up,(O)•et+ pP,2 p)*Ot has at most one zero. Therefore, we

conclude that the four control sequences

{÷I , {I 1{ +,-1 , {I, I )(3.21)

are the only candidates for the time-optimal control of this system.

3. Equation of the Switching Curve

Since, the control must be piecewise constant, we solve Eqns.(3.13) using

u(j - A = *1 (3.22)

12



to obtain the solution

S- (I 1 ÷A)e-A 0(3.23)

where C, - x•),I - 1,2. Eliminatingthetime 9 in Eqs. (3.23) and seting

o- (0c< ,cp) (3.24)

we find that

X - -A +( •2 (A A). (3.25)

Equation (3.25) describes a trajectory in the xx 2 plane. The trajectory originates at the state

( C ,. C 2) and evolves as a result of the action of the constant control x(t) - A. Since the

eigenvalues are negative, then the trajectories generated by a(t) - -1, which we call -1

forced trajectories, tend to the state (1, 1) of the state plane. The trajectories generated by

x(t) - +1 which we call + I forced trajectories, tend to the state (- 1, -1) of the state plane

[Ref. 1]. Since,

t-. W x, () - (C÷+A)")x-A - *1 1-1,2 (3.26)

where I, are the eigenvalues and A - "1. The -1 forced trajectories are shown in

Fig.(3.2) and the +I forced trajectories are shown in Fig.(3.3). Since the origin of the

state space is the desired terminal state and since we must reach the origin using either

control a - +1 or the control - - -1, we isolate the two forced trajectories which pass

13



through the oriin We denot thee ruojectoris to the origin by y. a*d More pvmcad, T.

is given by

Y. = ((zxi): -l+(i)-+l0 41; x1l0, *S O}, (3.27)

The y curve is given by

y. * f(x 1,Xi): 1 0 OX2S<O) (3.28)

3

2-

II

-1

.2

".3
-3 -2 -1 0 1 2 3

Figure 3.2 -1 Forced Trajectories
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3

2

0.

-2

-3
3 -2 -1 0 2 3

Figure 3.3 +1 Forced Trajectories

Using the shape of the forced trajectories shown in Figs. (3.2) and (3.3), we can

conclude that only the control sequence ( +1 can force any state on the y. curve to the

origin. Similarly, only the control sequence I -I can force any state on the y - curve to the

origin. Thus, we have derived the control law,

If (x•,x) e y then , "(O - +1 (3.29)

If (x 1 ,;) e y. then , "(O - -1 (3.30)

We call the union of the y'. and the y_- curves switching curve [Ref 1]. Then

combining Eqns. (3.27) and (3.28), the y curve is given by

y M ((x,,X2) : X2 - Di-(1+I)÷-1 1 (3.31)

15



Switching curves in xi x2 plane for uncoupled sem (3.15), and in YY2 phae for the

systen (3.5) are shown in Figs. (3.4) and (3.5).

3 -2 y+

,2

-3

YS

U - +1

R÷'

-3 -2 - 2

R..

-- 2

YY

U--I

--3

Figure 3.4 Switching Curve for the system (3.15)

I i i I I ;• Y
-3 -2 -1

Figure 3.5 Switching Curve for the system (3.5)
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Let us denote the set of states to the right ofthe y cu•ve as it., and the set of

points to the left of the y came as .. Clearly,

R.2

" { : ((3.32)

Using Eqns.(3.32), we can conclude that the control sequence 1 +1, -1 ) can force any

state belonging to set R. to the origin, and control sequence ( -1, +1 ) can force any state

belonging to set At. to the origin. Then, time-optimal control, as a function of the state

(xex;) is given by

a* - x*(x,,x) - +1 V (xx 2 ) e y. u R. (3.33)
8* - ='(X,,X2 ) " -1 V (XIa') e y. u

or in other words, the optimal control in terms of the state variables

"u(X,,X2) - A {J-! (l+IXll)9-X-1l) (3.34)

An alternative solution to the optimal control in terms of states can be found in Ref 4. We

can easily obtain equations for switching curve and time-optimal control in terms of t, and

Yz We find that, xa(t) and .,(t) are related to yt(t) and S2(t) by

X2(t) - - a PYv(g) - 7A2((
;,.(t).- -ePv,(t)- PsQ) (.5

The equations of the switching curve of time-optimal control are given by

-£ A P, - P,2(* - a P,,(0 ( - %0 H1 +I- CgPA(0- UY(4I'1) (3.36)
1- a PY(t) - "S2(41

"17



and

a * (p1 p)-84guPp(O +PY2(4 - UP(AO-G" ,(O7• "&tws ) =•|• l-.P,( 1(+ .,2(( -11 * ÷I-'Plla(O)-*73(4l I' - )1(K3.37)I- a PIQ)t( - 472(41I

Equation (3.36) and (3.37) demonstrate the advantage of using z,(t) and x2) as state

variables.

4. Analytic Solution for the Minimum Time t"

We may now evaluate the minimum time t' required to force any initial state

(x1,xi) to the origin (0, 0) using the time-optimal control law given by Eqns.(3.33). Let us

consider an initial state X - (x,,r2), as shown in Fig. 3.6, and the time-optimal trajectory

XWO to the origin, where W = (w,,1w2) is on the y curve [Ref 1].

"3'.
* R* 4.

"2 X(x,,X)

2 + -
-3 -2 -1 2 3

Figure 3.6 Time-optimal trajectory

-18



Let us assume a - A - Al is the optimal control applied during the trajectory WO, t2 is

the time required to go from Wto 0, and t, is the time required to go from X to W Then,

using Eqns.(3.23) we have

O - ÷(3.38)

Solving for t2 in the above equations, we find that

S ll• _1 A• )(3.39)t W + W2 +A'

and from equation (3.38) we have

S - -A*+(w2+A WI+A) (3.40)

where $ .

Using the shape of Fig. 3.6 and Eqns. (3.29) and (3.30), we conclude that,

A* - ign(w 1) - *XIw2} (3.41)

We again use Eqns. (3.23) to obtain ts. Then, we have

W - (3.4

w2 - (2 - A le + A" (3.42)

19



Note that we use a -A*. Since, during the trajectory X we have a m -A'. Solving for

t, in the above equation we obtain

a - : -t 4 2:) (3.43)

and from Eqn.(3.43), we have

w2 - A•+(;- A {_) (3.44)

Since, t - + t2 , then t is given by

t- 1b•4 ( AA"(-:A) (3.45)

We want to find t* as a function of x, and z, only, so we must eliminate w, from Eqn.

(3.45). Combining Eqns.(3.40) and (3.44), we find that

0 = A'D- -j )•,w+ o(3.46)

which provides us a relationship between w1, x,, and X.. For specific values of a and p

Eqn.(3.46) reduces to a quadratic expression. For example for a - I and p = 2 , we have

W, - (3.47)

20



Choosing the appropriate sign for w, and substituting into Eqn.(3.45), we can

obtain an analytic expression in terms of the stateX - (zx,,x ). Since we know the sign of A

from Eqns.(3.33), we can easily obtain the switching time and the minimum time g', required

to drive any initial state to the origin.

5. Simulation of the Linear Time-Optimal Regulator

Using a computer simulation, we test the accuracy of the solutions by choosing

the initial conditions in the regions defined by Eqns.(3.32) with a - 1 and p - 2. Figure

3.7 shows the state trajectories for the system (3.15) emanating from the region R.. Time-

optimal control as a function of time is shown in Fig. 3.8. As we claimed before, the control

sequence I +1,-1) drives the states to the origin with at most :7-1 switching in time-optimal

control. State trajectories in yy 2 plane are shown in Fig. 3.9. Next, we simulate the system

(3.15) with initial conditions emanating from the region R_. State trajectories and the time-

optimal control are shown in Fig. 3.10 and Fig. 3.11. This time, the control sequence (-1, +1)

drives the states to the origin with at most n-1 change, in the control function as we suggested

before. State trajectories iny, y2 plane are shown in Fig. 3.12.

The desired terminal state was the origin of the state space. Upon reaching the

origin the control effort must be shut off in order to maintain the system at rest. In both

simulations switching time and minimum time t agree with the calculated values obtained

from Eqns.(3.39), (3.43), (3.45), and, (3.47).

21
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Figure 3.7 Optimal state trajectories in xlx2 plane
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Figure 3.8 Time-optimal control
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Figure 3.9 State trajectories in YlYz plane
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IV. TIME-OPTIMAL CONTROL OF A THIRD-ORDER

PLANT WITH THREE REAL EIGENVALUES

A. GENERAL

In the previous chapter we solved the time-optimal control problem for a second-order

plant. We showed that the time-optimal control can be determined as a function of the state

by means of a switching curve which divides the state plane into two regions. In this chapter

we consider the time-optimal control problem for a third-order plant with three distinct real

and negative eigenvalues.

1. Problem Definition

We examine the system described by the third-order differential equation

ds')+(a + p +.,y) -s')(u€ +(a p +-,-y +yp) --•.,-(a pY),.t) _ 8 ( 4)
d3d (4.1)

where a, p, and y are real, distinct, nonzero eigenvalues. The transfer function of the

system is A a) - I

MR() (a +axe + Px#r+ Y) (4.2)

Using Eqn.(4.2) the state space equations can be written in matrix form as

JIM = 0 1 YN + 0 42) (4.3)

- aPy -(cgP + ay 0) -( +P + y)] tL
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Agai, as a first step we need to check the controllability and the observability

of the system (4.3). Since Q and R matrices, given by Eqns.(2.17) and (2.18) are both

nonsngular, the system is controllable and observable. The igenvakues are all nonpositive and

real, so an optimal control exists.

Using partial fraction expansion, we decouple the system (4.3) with P and P- given

by

1 1 1
(P - s)(v- ) ( - PXv- p) (& -v)p - v)

Pa a Py (4.4)

(s-pXY -s) (a-PXp-Y) (s-YXY-P)

(P - -xy - 6) ( - PX'v - P) (a - YXP - Y)

and up +I

p-1 a sy y+G (4.5)

lap P+G I.

As before we use Eqns.(3.7) and (3.8) to obtain

0) p 0 ") + BY) (4.6)

where •g) satisfies the differential equations

9(t) - -sa(;)+u(t)
(4 - -PX2(t)+a(g) (4.7)

9(,Q) - - {X ÷"{V
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For simplicity, we define the uncoupled state variables x,(O, x4, and x41 as

•4 "a S;(4
JV(4 - P'2(4 (4.8)jt(4 a YXI(4

where .i(t), (4., and xQ() satisfy the differential equations

.l(& M -GX,(÷)+u(O

4 " -PS(4+PB(4 (4.9)
,(#( - -rx3 (4O+÷R(9)

or in matrix form

+ P a (t) (4.10)

2. Hamiltonian, H-Minimal Control, and the Equations of the Costate

Variables

The Hamiltonian is

H - 1 - uspl(Ox(t) - Pp 2(4x,(t) - yp,(Oxi(t) +8(01[ .P1  + PP2(O ÷ YPs(t)] (4.11)

The control x(t) which minimizes the Hamiltonian is

'() - -'ig( X p,(OS P÷p(2(4Yp,() (4.12)
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Where the costate vaiable 00, A * s tief the equIatin

S(4.13)
&%W

so that

PI(4 a PI(O)e'

P2(0 - PJ(*).Pi (4.14)

Substituting Eqn.(4.14) into Eqn.(4.12), we find that

g() - - al. {pl(O)g" ÷pp2(S)* t+yp÷ps) Tt) (4.15)

Then, the candidates for time-optimal control are the six control sequences

(+I ), (- I,+,-1 ),(+It 09-1, +110+19 -1, +1), (- 1 +1, - ) (4.16)

3. Equations of the Switching Curve and the Switching Surface

Again, we solve Eqns.(4.9) using

NO - A - *1 (4.17)

to obtain the solutions
XM " ((I-A•'6%A
x2(0 - (,- A)#-P'+A (4.18)

XM - ((,-A)eT',÷A



Elir-mintig*=tim in Eqns.(4. 18), we find that

-A) (4.19)

n (C 3 -AJ +A- [

Eqn.(4.19) describes a trajectory in the three-dimensional state space. From Eqn.(4. 18) we

conclude that

11Mm A, 1 (4.20)

where A - I. This means that atrajectoygenerated by - +1 tends to the point (1,1,1)

and a trajectory generated by a - -1 tends to the point (-1,-1,-1).

Now, let I V, ) denote the set of states which can be forced to the origin (0,0,0)

of the state space by application of the control a - A*-*1. We use X to indicate a state

belonging to the set ( V, ) and x,,, %a, ai, to indicate the components of x2 . If t9 denotes

the positive tine required to forcex to the origin using - A* -*1- , then from Eqn.(4.18)

we have

6 - (x1,s-A le" +A"(4.21*
0 .•m'aP+A (4.21)

* - (,•2a*eauinA"

or equivalently

X1.2 - A'_A'*"%

X22 " A*-AO* t ' (4.22)

'.2 " A*-A'#Y2
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Let [V, denote the set of states which can be forced to the set I V2 ) by

application of the control a - -A ". Again, let vector ,; indicate the states belonging to set

I V} and the components of,; be x.4, x,4, and xa,. If g denotes the positive time required

to force x, to a state x2 e { V2 ), then using Eqn.(4.l8) we obtain the states belonging to

I V}.

33= - , *1 )e÷*' -_ A* (4.23)

or equivalently

X&I =A +÷ (Xa +÷A O*} 'a'

X24 - "A++(x+•÷A*')* (4.24)

Thus, we have defined the sets I V,) and { V2 ). Eqns. (4.22) and (4.24) imply that the

trajectory originating at any point x, F I V, ) and generated by a - -A * will remain on the

surface { V, )until it hits a point on the set (curve) IV 2 }.

To simplify the Eqns. (4.22) and (4.24), we define new variables z, and z by

92 a e% (4.25)

Using these new variables, Eqns. (4.22) and (4.24) become

XA = A*-A°*"

X - A "- A ";P (4.26)
. A'-A3
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- -Ao÷ A • (4.27)

Substituting Eqns. (4.26) in Eqns. (4.27) we obtain

A'•U M -1+÷gj-(9IV6
- -. .- ÷2g-g)' (4.28)

A*X,3 1 -1+2T-g)'

For simplicity, we define new variables w,, and w2 by

W, -X (4.29)

Since we specified the times tt and g2 positive, this implies that

1 <; T - 1,2 (4.30)

where x is given by Eqn.(4.25). Combining Eqns. (4.29) and (4.30), we obtain the inequality

I < W1 < W2  (4.31)

Using the variables w, , and w. , Eqns. (4.26) and (4.28) become

A'*=i. - 1 +2W1-
A ' 1i " 1 +2wP-w2P (4.32)

A °*X, - 1 +2W -w2

A'x,.l - -1 +2w" -W2
A "*., - -1 +2wP -w2P (4.33)

A "X,1 " -1 +2Wt -w2T

Now, let us state some important properties of the sets I V1  and {V2 }.
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"* Thesets(V, ) and{V2 }are symetric about the origin.

"* In the three-dimensional state space, the set V}2) is a curve and ( VI) is a surface.
I V, ) divides the state space into two parts.

" The sets ( V, ) and I V2 ) are formed by families of smooth and continuous
trajectories.

"* The sets ( VI) and { V2 I are infinite in extent. The origin is contained in the set {VZ),
the set I V2 ) is contained in ( V1 .

"* The state (1,1,1) is above the surfaice{ V1 , and the state (-I,-I,-)is below the surface

{V,}.

In order to determine the optimal control law, we need to find whether the state

x given by

X M Xi (4.34)

is above, on, or below the surface {V1 ). We set

X -, X= 1, Xt X2 (4.35)

in the first two Eqns. of (4.33) and solve these two equations to determine the values of

w1, w2 and A * - +1 or A* - -1 . We need to satisfy the inequality given by (4.31).

Then, we substitute the values of w , w2 , and A * in the last equation of (4.33) and evaluate

x,.i. We can compare the computed value ofv,12 with the last component of the state x.
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if

is- zu(4.36)

then we say that xis above thesurface I V,)If

(4.37)

then x F (V,), and if

X S-CS (4.38)

then we' say that x is below the surflce (V, Figure 4.1 shows an illustration of the

projection x, ,of astate xon themurface (V,)[Ref. I). We draw astraight line parallel

to the x axis through the point x - (x1 j,xiz) which intersects the surface ( V,) at apoint

x,- (x,~x,x3,x).Compari~on of;x with jclindicates whether x is above, on or below the

surface.

portion of the murface V1)

Figure 4.1 Projection x ,1o the state x on the surface (V1)
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4. Optied Contr u"

Time-optimal control a, which forces any state x to the origin can be defined

in the following way

If x isabove{V 1 }then a' - (-1)"

If x is below I V, ) then a"* - -(-1)" (4.39)

Ifxis e IV,) then a'- (-IrA"

Ifxis e {V 2 ) then. '= -- (-1)A"

Let us show that the control law given by Eqns. (4.39) is the time-optimal one. We recall that

if the state x belongs to { V, ), then the control switches exactly once. Since the system has

three real eigenvalues, the time-optimal control can switch at most n-i times. Let us consider

the state

X, =(4.40)

which is above { V, ). Since n = 3, the control law (4.39) states that a x -1 . Suppose that

at x1, we apply the control a = +1. From Eqn.(4.20), all the trajectories generated by

x * - +1 tend to the state x1. So, the state will remain at x, forever. Therefore, to generate

a trajectory which hits the surface I V1 , we must apply a * - -1 at X,. If the control

switches from a - -1 to & - +1 at I V1 , the total number of switchings is n-i. This does

not violate the necessary conditions. Now, let us consider the other states x which are above

I V, ). If a - +1, then x tends to the state (1,1,1), and evertually we must switch to

a - -1 to reach { V, ). But this method requires n switchings which violates the necessary
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conditions. Therefore, if the state is above ( V1 the control must be a - -1. By the same

reasoning ifthe state is below I V}, the control a - +1 forces x to {V,). In eithercase,

the total number of switchings is exactly n-1. [Ref 1]

Now, we need to show that if a state x is on I V,) but not in I V2), the control

must be - (-1)*A°. Suppose that for the point xi e {VJ, thevalueofA* is -1.

According to the control law (4.39), we must use a - ÷1 at x. Application of a - ÷1

generates a trajectory which follows the surface { V, ) and hits I V2 ) at a point at which the

control must switch to a - -1. This control sequence requires exactly one switching.

Suppose that at x,, we apply a - -1. The resulting trajectory will not follow the surface

I VI). It will go below I V1 , because, it will tend to the state (-1,-1,-1), which is below {VI}

by definition. The control must switch from . - -1 to a - +1 so that the state is brought

back to { V1) . But this control sequence requires exactly n switchings. So it can not be a

time-optimal one. From the above considerations, we conclude that the control which requires

the minimum number of switchings is the time-optimal one. [Ref. 1]

5. Simulation of Minimum Time Control of the Third Order Regulator

We simulate system (4.10), with initial conditions above, below, and on the

switching surface, using a - 1, p - 2, and y - 3. Figure 4.2 shows the three-dimensional

state trajectories emanating from an initial point above the switching surface. Time-optimal

control is shown in Fig. 4.3. The control sequence ( -1, +1, -1 ) drives the states to the origin

with exactly two switchings as we suggested before. State trajectories as a function of time

are shown in Fig. 4.4.
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Next, we si•ulate the systm mtating fiom an initial condition below the

switching surface. This time control sequence 1 +1, -1, +1 ) drives the states to the origin,

again with exactly two switchings. leTe-d4eumsional state trajectories are shown in Fig. 4.5.

Time-optimal control and the state trajectories as a function of time are shown in Figs. 4.6

and 4.7.

Lastly, we simulate the system starting from a point on the switching surface.

Figure 4.8 shows the three-dimensional state trajectories. Time-optimal control and the state

trajectories as a function of time are shown in Figs. 4.9 and 4. 10. From Fig. 4.9 the control

law { -1, +1) drives the states to the origin with only one switching.

All three simulations confirm that the control law given by (4.39) is the time-

optimal control. Again, upon reaching the origin the control effort must be shut off to keep

the system at rest.
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V. CONCLUSION

We have examined the time-optimal control problem for one sucond-order and one

third-order system. These systerm had the foMlowing properties in common:

"* The systems were linear, and time invariant.

"* The transfer fiunction of the system did not contain any zeros.

"* The eigenvalues of the transfer function were real, nonposifive, and distinct.

"* Control was effected by a single control variable m0 , which was bounded in
magnitude.

"* The desired terminal state was the origin, which was an equilibrium point of the system.
Upon reaching the origin the control needed to be shut off in order to maintain the
system at the origin. [Ref I]

The method which we used to obtain the time-optimal control law was almost the same

for each of these systems. Essential steps in our synthesis of the control were,

"* We first reduced the system differential equation to a set of first order equations.

"* We then chose a convenient set of state variables by means of a series of linear
transformations which reduced the system matrix to its Jordan canonical form.

"* We examined the Haniiltonian, and found the control which absolutely minimized the
Hamiltonian. We observed that the time-optimal control had to be piecewise constant
and could switch at most n-1 times for an nth order system.

"* We then determined the control sequences which were candidates for time-optimal
control.

"* We used a method of elimination to determine the time-optimal control. We found a
unique control sequence from among the candidates which would force a given state
to the origin. Then we developed the control law. [Ref, I]
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The complexity of the controler may increase rapidly with the increase in the order of

the system. For systems whose order is higher than three, some iterative procedure must be

used to solve the system of ta equations that describe the switching hypersurface.

Even though the equation of the switch hypersurface is complex, from a conceptual point of

view the operation of a high-order time-optimal system presents no particular difficulty. Quite

often, knowledge of the optimal solution can help the designer to construct an excellent

suboptimal system. [Ref, 1]

Negative time approach was used in Ref. 5 to determine the time-optimal control for

a third-order system with two integrators and a single time constant. The method requires

analytic calculations of boundary conditions for each different set of eigenvalues. The process

of elimination among the candidates for time-optimal control reduces the complexity and

applicable to the higher-order systems as demonstrated in previous chapter.
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APPENDIX

PROGRAM CODE

1. OPTIMALX.M

% This program simulates the 2nd order bang-bang controller using a svwtching law for

% the control effort

clear,clc,clg

% Setting eigenvalues of the system

alfa--l; beta=2;

% Ratio of the Eigenvalues

k=(-beta)/(-alfa);

% State Equations for the uncoupled system (x variables)

XA=[-alfa 0;0 -beta]; XB=[-alfa -beta]';

% State Equations for the uncoupled system (z variables)

ZA=[-alfa 0;0 -beta]; ZB=[(-1I/(alfa-beta)) (1I/(alfa-beta))]';

% State Equations for the coupled system (y variables)

YA=[0 1;-alfa*beta -alfa-beta]; YB=[O 1]';

% Transition matrix between y (coupled) and z (uncoupled) systems

P=[ 11 ;-alfa -beta];

% Simulation time

tf=2.232;

% Time increment and number of steps for simulation
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dtO0.0O1; kmaxtfldt+1;

% Equation of the switching curve for uncoupled *yssa(x variables)

xl=-1. 5:0.01: 1.5;

x2-(xl1./abs(xl )). *((14.abs(xl)).Ak..1);

% Equation of the switching curve for uncoupled systemi(z variables)

c=a~fa*(alfk-bet~a);

% Equation of the switching curve for coupled systemn(y variables)

yl =( I/(alfa*(betaA2-affa*beta))). *(alfa.*2-bta*x ); y2 =( /(alfk-beta)). *(x2.x 1);

x--zeros(2,kmax); z--zeros(2,kmax);

y~zeros(2,kmax); u-zeros(l1,kmax);

time=zeros(lI,kniax);

% Initial conditions

x(:,1)=[3 2]';

y(:, I )-P*z(:, 1);

% Discretize the Systems

[phi,del]=c2d(XA,XB,dt); [phiz,delz]=c2d(ZAZB,dt); [phiy,dely]=c2d(YAYB,dt);

% Begin Simulation

fori= 1: knax-1I

u(i)=sign(x(l1,i)/abs(x(lI,i))*(( I+abs(x( 1 ,i)))A k-lI)-x(2,i));

x(:,i+ )=phi*x(:,i)+del*u(i);
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z(:,i+l)""ph*z4:,i)+ddz~u(i);

Y(:,i+1)'phy*Y(:,i)+ddy~u(i);

timc(i+ 1)=timne(i)+dt;

end

figure(1); plot(xl~x2,'r5 ); x~acXl');ylad('X2');

titlc('S WITCHING CURVE FOR UNCOUPLED SYSTEM (X VARIABLES));

figure(2);piot(yl ,y2,'m');xlabel('Y1 );ylabcCY2');

title('S WITCHING CURVE FOR COUPLED SYSTEM (Y VARIABLES)');

figure(3); plot(time~u);grid; xlabel('TIME (Seconds);ylabel('MAGNrITUDE');

title('CONTROL EFFORT vs TIME');

axis([O max(time)+O.05 -1.75 1.75]);

figure(4); plot(x(1, :)1x(2, :));grid ; xlabel('X1 ');ylabel('X2');

title('STATE TRAJECTORIES AND SWITCHING LINE (X VARIABLES)');

hold on; plot(xl,x2,'r:'); hold off

figure(5)

plot(y(1, :),y(2 ,:)), grid; xlabel('Yl1');ylabel('Y2');

title('STATE TRAJECTORIES AND SWITCHING LINE FOR COUPLED SYSTEM

(Y VARIABLES)');

hold on ; plot(yl,y2,'r:');

hold off
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2. RELAY3BT.M

% This program simulates the time optimal control of a third order system having three

%real distinct negative eigenvalues

% Written by Serhat Balkan 12 April 1994

clc,clear,clg,! del *.met,

% Set the eigenvalues of the system

alfa=l; beta=2; gama=3;

% Transition matrix between y (coupled) and z (uncoupled) systems

P=-[(1/((beta-alfa)*(gama-alfa))W (1/((alfa-beta)*(gama-beta))) .......

(1/((alfa-gama)*(beta-gama)));

(alfa/((alfa-beta)*(gama-alfa))) (beta/((alfa-beta)*(beta-gama)))...

(gama/((alfa-gama)*(gama-beta)));

(alfa^2/((beta-alfa)* (gama-alfa))) (betaA2/((alfa-beta)*(gama-beta)))....

(gamaA2/((alfa-gama)*(beta-gama)))];

% State Equations for the uncoupled system (x variables)

XA=[-alfa 0 0;0 -beta 0;0 0 -gama]; XB=[alfa beta gama]';

% State Equations for the uncoupled system (z variables)

ZA=[-alfa 0 0;0 -beta 0;0 0 -gama]; ZB=[1 I11]';

% State Equations for the coupled system (y variables)

YA=[01 0;0 01;

-alfa*beta*gama -(alfa*beta+alfa*gama+gama*beta) -(alfa+beta+gama)];

YB=[O 0 1]';
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% Simulation time

tf=2.66;

% Time increment and number of steps for the simulation

dt-0.01; kma-tf•dt+l; time=0;

% Discretize the systems

[phix,delx]=c2d(XA,XB,dt); [phizdelz]=c2d(ZAZB,dt); [phiydely]=c2d(YAYB,dt);

% Set initial conditions

x(:,1)-[2 3 4]';

z(:,l):=[(I/alfa)*x(l,l) (1/beta)*x(2,1) (1/gama)*x(3,1)]';

y(:, 1)=P*z(:, 1);

i=0;

% Order of the system

N=3;

% From Eqn.(4.35) set:

xl=x(l,I); x2=x(2,1);

% Call function to determine wl, w2 and the optimal control

[w 1,w2,deltas]=solve lb(x 1,x2);

% Calculate the third point on the switching surface

x31 =deltas*(- 1+2*w 1 Agama-w2Agama);

% Decide whether initial state above or below the switching surface

m-x(3,1)-x3 1;

% Find the optimal control which drives the states to the switching
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% suirface in i,-in. time when stas are above the switchng surface

while mn> 0;

u(i)=(- 1 N);

x(:,i+1 )=phix*x(:,i)+delx*u(i);

z(:,i+lI)=phiz'~z(:,i)+delz*u(i);

y(:,i+ 1)=phiy*y(:,i)+dely*u(i);

time(i+lI)=timne(i)+dt;

xl~x(1,i+1);

x2=x(2,i+ 1);

[w I,w2,deltas]=solvelb(xl ,x2);

x3 1 =deltas*(- 1 +2*wlAgaina-w2Agama);

m~x(3,i+ I)-x3 1;

end;

% Find the optimal control which drives the states to the switching surface

% in min. time when states are below the switching surface

while m < 0;

i=i+ 1;

u(i)=-(- I IN),

x(:,i+1 )=phix*x(:,i)+delx*u(i),

z(:,i+ l)=phiz*z(:,i)+delz*u(i);

y(,i+lI)=phiy*y(:,i)+dely*u(i),
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xl =x(1 i+ 1);

x2=x(2,i+ 1);

[wi ,w2,deltas] solvelb(xI ,x2);

03 1 =deltas*(- I +2*w1 Agpm-wAgam);

m=x(3,i+1I)-x3 1;

end;

% Find the optimal control which drives the states to the switching

% curvce in min. time when states are on the switching surface

if m==O

counter- 1;

else

counteri;,

end

for i~counter: kmax- 1;

xl=x(1,i);

x2=x(2,i);

[wi ,w2,deltas]=solve Ib(xlI,x2);

if (deltas*x(l1,i)-l1 2*w1 +w2 = 0) &....

(deltas*x(2,i)- I 2*w I A2+w2A2 ==0 & deltas*x(3 ,i)-lI 2*w IAgama+w2Agama 0);

u(i)=-(- IAN)* deltas,

else
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end

x(:,i+I )=pbix*x(:,i)+delx*uQi);

z(:,i+ )=pbiz*z(:,i)+delz*u(i);

y(:,i+l1)=phiy*y(:,i)+dely*u(i);

time(i+ I)=time(i)+dt;

end

% Plot the outputs

plot3d(x(1, :),x(2, :),x(3, :),-45,4 5);

title('3-D PLOT OF THE STATE TRAJECTORIES FOR UNCOUPLED SYSTEM

(X VARIABLES)'),

meta 3ax; pause,clg,

plot(time,x(1, :),time,x(2, :),time,x(3, :));grid,

title('STATE TRAJECTORIES vs TIME (X VARIABLES)');

xlabel('TIME (seconds)');ylabel('MAAGNITUJDE');

meta 3bx~pause,clg ;axis([O max(tinie)+O. 1 -1.75 1.75]);

plot(time(l1:length(u)),u);grid,

xlabel('TLME (seconds));ylabel('MAGNITUJDE');

title('OPTIMAL CONTROL EFFORT (u(t)) vs TIME'),

meta 3c

axis('normal'), pause,

plot3d(y(1 ,:),y(2,:),y(3,:),75,-45);
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titkc('3-D PLOT OF THE STATE ThLAIECTORIES FOR COUPLED SYSTEM

(Y VARIA-BLES)');

meta 3ay; pausecig

plot~fime~y(1, :),time~y(2, :)tfimey(3, :))gIpid,

titleCSTATE TRAJECTORIES vs TEME (Y VARIBLES));

xlabel(TUVIE (seronds));ylabe1CMAGNITIDE');

meta 3bypause,clg
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3. SOLVEIB.M

% Function solve lb decides the optimal control and the required time to drive the states

% to the switching surface or to the switching curve and passes these values to the

% main program (relay3bt.m).

% Written by Serhat Balkan 12 April 1994

function [w l,w2,deltas] = solvel b(x1,x2)

delta= 1,

% a 1, a2, and delta are the local variables corresponding to w1, w2, and deltastar

%respectively.

[a l,a2,delta]=solve2b(x 1,x2,delta);

% Check if Eqn.(4.31) is satisfied or not

if (al>l)&(a2>al)

wl=al; w2=a2;

deltas=delta;

else

delta=- 1;

[a I ,a2,deltaj=solve2b(x I ,x2,delta);

wl=al;

w2=a2;

deltas=delta;

end

end
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4. SOLVE2B.M

% Function Solve2b calculates the required time to drive the states to the switching

% surface or to the switching curve processing the given states and passes these values

% to the function solvelb

% Written by Serhat Balkan 12 April 1994

function [al,a2,delta] = solve2b(xl,x2,delta);

% Use the first two equations of Eqn.(4.33) to find wl, and w2 (al and a2 corresponds to

% wI and w2 respectively)

al=delta*xl+l+0.5*sqrt(2*(xl^2)+4*deita*xl-2*delta*x2);

a2=2*al-delta*xl-I;

% Eliminating any complex value

ifimag(aI) -= 0;

delta=-delta;

al=deita*xl+I+0.5*sqrt(2*(x1A2)+4*delta*xl-2*delta*x2);

a2=2*a l-delta*x1-1;

end
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